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Background

Let G be a compact quantum group acting on a C∗-algebra A via the
action τ : A −→ A⊗ C(G), so that we have a C∗-dynamical system
(A,G, τ). Let (π,U) be a covariant representation of the C∗-dynamical
system (A,G, τ) on a Hilbert space H. Let (A,H,D, γ) be an even
spectral triple on A.

1 The Dirac operator D is called “equivariant” under the action τ if
D ⊗ 1 commutes with U.

2 If γ ⊗ 1 also commutes with U, then the spectral triple is called
G-equivariant.

Taking F = D|D|−1, the spectral triple (A,H,D, γ) induces a
K-homology class [(A,H, F, γ)] in K0(A) consisting of even Fredholm
modules. To check nontriviality of this class, one pairs it with K0(A)
through the Kasparov product.
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Given a projection P ∈Mn(A) define

Hn = H⊗ Cn , γn = γ ⊗ In , Fn = F ⊗ In ,

P+ = 1+γn
2 P , P− = 1−γn

2 P .

The following operator

P−FnP
+ : P+H+

n −→ P−H−n

is a Fredholm operator, where Hn = H+
n ⊕H−n under the grading

operator γn. Index of this Fredholm operator is the value of the
K0 −K0 pairing 〈[P ], [(A,H, F, γ)]〉.

1 An even spectral triple (A,H,D, γ) is called nontrivial if
〈[P ], [(A,H, F, γ)]〉 is nonzero for some [P ] ∈ K0(A).
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Motivation

A compact quantum group G acts on its underlying C∗-algebra
A = C(G) via the comultiplication ∆, and we have the C∗-dynamical
system (C(G),G,∆). A natural choice for A is the dense Hopf
?-subalgebra O(G) generated by the matrix coefficients of f.d.
corepresentations of (C(G),∆).

Now, one can desire to produce an explicit G-equivariant nontrivial
Dirac operator on A. We are interested in compact quantum groups
arising from the semidirect product construction of Woronowicz et al.,
for which Uq(2) is a nontrivial concrete example.
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Origin of Uq(2)

In (Kasprzak-Meyer-Roy-Woronowicz, 2016), Woronowicz et al.
defined a family of q-deformations of SU(2) for q ∈ C∗. This agrees
with the compact quantum group SUq(2) when q is real. But for
q ∈ C \ R, SUq(2) is not a compact quantum group, rather a braided
compact quantum group. In (Meyer-Roy-Woronowicz, 2016),
Woronowicz et al. showed that for a compact quantum group
G = (A,∆) and a braided compact quantum group B over G, the
semidirect product A� B becomes a compact quantum group.

Taking B = SUq(2) for q ∈ C∗ and A = C(T), we obtain a genuine
compact quantum group, and it is the coopposite of the compact
quantum group Uq(2) defined in (Zhang-Zhao, 2005).
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Definition: The CQG Uq(2)

Let q ∈ C∗. The C∗-algebra C(Uq(2)), to be denoted by Aq throughout,
is the universal C∗-algebra generated by a, b,D satisfying the following
relations :

ba = qab, a∗b = qba∗, bb∗ = b∗b, aa∗ + bb∗ = 1,

aD = Da, bD = q2|q|−2Db, DD∗ = D∗D = 1, a∗a+ |q|2b∗b = 1.

The compact quantum group structure is given by the comultiplication
∆ : Aq −→ Aq ⊗ Aq defined as follows :

∆(a) = a⊗ a− q̄b⊗Db∗ , ∆(b) = a⊗ b+ b⊗Da∗ , ∆(D) = D ⊗D.

Let O(Uq(2)) be the ?-subalgebra of C(Uq(2)) generated by a, b and D.
The Hopf ?-algebra structure on it is given by the following :

antipode: S(a) = a∗, S(b) = −qbD∗, S(D) = D∗,

S(a∗) = a, S(b∗) = −(q̄)−1b∗D ,

counit: ε(a) = 1, ε(b) = 0, ε(D) = 1 .
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Faithful representations of C(Uq(2) for |q| < 1

We concentrate on the case of |q| 6= 1. It is enough to restrict our
attention to the case |q| < 1 and q 6= 0 because Uq(2) and U 1

q
(2) are

isomorphic as CQGs.

Fix any q ∈ C∗ with |q| < 1 and let θ = 1
π arg (q). Let H be the Hilbert

space `2(N)⊗ `2(Z)⊗ `2(Z). Consider the right shift V : en 7→ en+1

acting on `2(N) and the bilateral shift U : en 7→ en+1 acting on `2(Z).
Define the following representation π of Aq on H :

π(a) =
√

1− |q|2N V ⊗ 1⊗ 1 , π(b) = qN ⊗ U ⊗ 1 ,

π(D) = 1⊗ e−2π
√
−1θN ⊗ U .

Proposition

The representation π of Aq defined above is faithful.
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Linear basis and the Haar state

Define

〈n,m, k, l〉 =

{
anbm(b∗)kDl if n ≥ 0,

(a∗)−nbm(b∗)kDl if n ≤ 0.

Theorem

The set {〈n,m, k, l〉 : n, l ∈ Z,m, k ∈ N} is a linear basis of O(Uq(2)).

Theorem

The Haar state h : C(Uq(2)) −→ C is given by the following,

h(x) = (1− |q|2)
∞∑
n=0

|q|2n〈en,0,0 , π(x)en,0,0〉 ,

where {en,r,s} denotes the standard orthonormal basis of `2(N× Z× Z).
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Torus quotient

Moreover, one has

h(〈n,m, k, l〉) =

{
1−|q|2

1−|q|2(m+1) if m = k, and n = l = 0,

0 otherwise .

In this case of |q| < 1, the Haar state is not a trace as

h(a∗a− aa∗) = (1− |q|2)h(bb∗) = 1−|q|2
1+|q|2 6= 0 .

Let ∆T denotes the coproduct on C(T) and φ : Aq −→ C(T) be the
homomorphism given by φ(a) = 1, φ(b) = 0 and φ(D) = z. It follows
that ∆T ◦ φ = (φ⊗ φ) ◦∆ . Thus, T is a quantum subgroup of Uq(2)
and hence, T acts on Aq by the formula Φ(x) = (id⊗ φ)∆ . In such a
case, one defines the quotient space Uq(2)/T as follows,

C(Uq(2)/T) = {x ∈ Aq : (id⊗ φ)∆(x) = x⊗ 1}.
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Faithfulness of the Haar state

The conditional expectation E : Aq −→ C(Uq(2)/T) is defined as
(id⊗ (hT ◦ φ)) ◦∆ , where hT denotes the Haar state on T.

Proposition

The C∗-algebra C(Uq(2)/T) is the C∗-subalgebra of Aq generated by a
and b, and C(Uq(2)/T) = C(SU|q|(2)).

Theorem

The Haar state on the compact quantum group Uq(2) is faithful.
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Corepresentations of Aq

For ` ∈ 1
2N and i, j ∈ I` := {−`, · · · · · · , `}, let

f `j =

(
2`

`+ j

)1/2

|q|2
a`−jb`+j ,

V R
` = ⊕`j=−`Cf `j and TR` = ∆|V R

`
.

That is, V R
` is the vector subspace of Aq spanned by degree

2`-homogeneous monomials in a and b. We get a corepresentation
TR` : V R

` −→ V R
` ⊗Aq of Aq on V R

` . For i, j ∈ I`, let t`ij denote the

matrix coefficients of TR` with respect to the basis {f `j } of V R
` , and we

have

TR` (f `j ) = ∆(f `j ) =
∑̀
i=−`

f `i ⊗ t`ij .

Hence, TR` is a (2`+ 1)-dimensional corepresentation of Aq.
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Moreover, there are infinitely many one dimensional corepresentations
Dm of Aq.

Consider the following sesquilinear forms 〈·, ·〉R and 〈·, ·〉L on Aq,

〈x, y〉L = h(x∗y) , 〈x, y〉R = h(xy∗) for x, y ∈ Aq .

In the Hilbert space (V R
` , 〈·, ·〉L), the set B` :=

{
|q|`|2`+ 1|1/2|q| f

`
j

}
i∈I`

is

an orthonormal basis of V R
` .

Theorem

For m ∈ Z and ` ∈ 1
2N, TR` D

m is an irreducible corepresentation of Aq
and its matrix coefficients with respect to the basis B` are
{t`ijDm : i, j ∈ I`}. Moreover, the matrix

((
t`ijD

m
))

is a unitary
element of M2`+1(C)⊗Aq .
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The Peter-Weyl decomposition

Theorem

Given a corepresentation T of Aq, let C(T ) denotes the vector subspace
of Aq generated by the matrix coefficients of T . Then, we have

1 Aq =
⊕

`∈ 1
2
N,m∈Z C(TR` Dm).

2

〈t`ijDm, t`
′

i′j′
Dm

′
〉R = |q|−2j |2`+ 1|−1|q| δ``′ δii′ δjj′ δmm′

〈t`ijDm, t`
′

i′j′
Dm

′
〉L = |q|2i|2`+ 1|−1|q| δ``′ δii′ δjj′ δmm′

3 The set {TR` Dm : ` ∈ 1
2N,m ∈ Z} is a complete list of irreducible

mutually inequivalent corepresentations of Aq .

4 The set
{
|q|−i|2`+ 1|1/2|q| t

`
ijD

m : ` ∈ 1
2N,m ∈ Z

}
is an orthonormal

basis of L2(h).
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Little q-Jacobi polynomials and matrix coefficients

Theorem

The matrix coefficients t`ijD
k are expressed in terms of the little

q-Jacobi polynomials in the following way :

1 for the case of i+ j ≤ 0, i ≥ j,

a−(i+j)ci−j(q̄)(j−i)(`+j)
( 2`
`+j)

1/2

|q|2

( 2`
`+i)

1/2

|q|2

(
`−j
i−j
)
|q|2
P(i−j,−i−j)
`+j (bb∗; |q|2)D`+j+k ;

2 for the case of i+ j ≤ 0, i ≤ j,

a−(i+j)bj−iq(i−j)(`+i)
( 2`
`+j)

1/2

|q|2

( 2`
`+i)

1/2

|q|2

(
`+j
j−i
)
|q|2
P(j−i,−i−j)
`+i (bb∗; |q|2)D`+i+k ;

3 for the case of i+ j ≥ 0, i ≤ j,

q(i−j)(`+i)
( 2`
`+j)

1/2

|q|2

( 2`
`+i)

1/2

|q|2

(
`+j
j−i
)
|q|2
P(j−i,i+j)
`−j (bb∗; |q|2)(a∗)i+jbj−iD`+i+k ;
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Tensor product decomposition and classification

1 for the case of i+ j ≥ 0, i ≥ j,

(q̄)(j−i)(`+j)
( 2`
`+j)

1/2

|q|2

( 2`
`+i)

1/2

|q|2

(
`−j
i−j
)
|q|2
P(i−j,i+j)
`−i (bb∗; |q|2)(a∗)i+jci−jD`+j+k .

Theorem

The following decomposition holds,

T`1D
m ⊗ T`2Dn

' T`1+`2D
m+n ⊕ T(`1+`2)−1D

m+n+1 ⊕ · · · ⊕ T|`1−`2|D
m+n+2min{`1,`2}.

Theorem

Let q and q
′

be two non-zero complex numbers which are not roots of
unity. Then, Uq(2) and Uq′ (2) are isomorphic as CQGs if and only if

q
′ ∈ {q, q, 1q ,

1
q}.
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Towards the K-groups

For q = |q|eiπθ, let θ /∈ Q \ {0, 1}. Let T := C∗(V ) be the Toeplitz
algebra. We have the well-known short exact sequence

0 −→ K ι−→ T
σ−→ C(T) −→ 0

where σ : V 7−→ z. Consider the homomorphism

τ : C(Uq(2)) −→ C(T)⊗ B(`2(Z)⊗ `2(Z))

given by τ = σ ⊗ 1⊗ 1, and for b0 = p⊗ U ⊗ 1 let

Iθ = the closed two-sided ideal of C(Uq(2)) generated by b0 and b∗0 ,

Bθ = C∗
(
{τ(a0) , τ(Dθ)}

)
= C∗

(
{z⊗ 1⊗ 1 , 1⊗ e−2

√
−1πθN ⊗ U}

)
.

Proposition

The following chain of C∗-algebras

0 −→ Iθ
ι−→ C(Uq(2))

τ−→ Bθ −→ 0

is an exact sequence, where ‘ι’ denotes the inclusion map.
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The K-groups

Lemma

Let Aθ be the noncommutative torus. Then, Iθ = K(`2(N))⊗ Aθ .

Theorem

For q = |q|e
√
−1πθ with θ irrational, both the K-groups K0(C(Uq(2)))

and K1(C(Uq(2))) are isomorphic to Z2. The equivalence classes of
unitaries [D] and [p⊗ U ⊗ 1 + (1− p)⊗ 1⊗ 1] form a Z-basis for
K1(C(Uq(2))). The equivalence classes of projections [1] and [p⊗ pθ]
form a Z-basis for K0(C(Uq(2))), where pθ denotes the Powers-Rieffel
projection with trace θ in the noncommutative torus Aθ, and
p = |e0〉〈e0|.
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Action of the generators on L2(h)

Let us fix the following notation

e`i,j,k := |q|−i
√
|2`+ 1||q| t`i,j(D∗)k

= |q|−i
√
|2`+ 1||q| t`i,jD−k

for the orthonormal basis of L2(h). Here, k ∈ Z, ` ∈ 1
2N and

i, j ∈ {−`, · · · , `}.

Theorem

The action of the generators of Uq(2) on the orthonormal basis element
e`i,j,k is described by the following :

1 D . e`i,j,k =
(
q
q

)(i−j)
e`i,j,k−1

2 D∗ . e`i,j,k =
(
q
q

)(i−j)
e`i,j,k+1
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Theorem

1 b . e`i,j,k = β+(`, i, j)e
`+1/2
i−1/2 , j+1/2 , k + β−(`, i, j)e

`−1/2
i−1/2 , j+1/2 , k−1

2 b∗ . e`i,j,k = β++(`, i, j)e
`+1/2
i+1/2 , j−1/2 , k+1 + β+−(`, i, j)e

`−1/2
i+1/2 , j−1/2 , k

3 a . e`i,j,k = α+(`, i, j)e
`+1/2
i−1/2 , j−1/2 , k + α−(`, i, j)e

`−1/2
i−1/2 , j−1/2 , k−1

4 a∗ . e`i,j,k = α+
+(`, i, j)e

`+1/2
i+1/2 , j+1/2 , k+1 + α+

−(`, i, j)e
`−1/2
i+1/2 , j+1/2 , k

where,

β+(`, i, j) = q`−j

√
(1− |q|2(`+j+1))(1− |q|2(`−i+1))

(1− |q|2(2`+1))(1− |q|2(2`+2))
.

β−(`, i, j) = −q`−j−1(q)j−i+1

√
q

q̄

√
(1− |q|2(`−j))(1− |q|2(`+i))
(1− |q|2(2`))(1− |q|2(2`+1))

.
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Theorem

β++(`, i, j) = −qj−i−1(q)`−j+1

√
q

q̄

√
(1− |q|2(`−j+1))(1− |q|2(`+i+1))

(1− |q|2(2`+1))(1− |q|2(2`+2))
.

β+−(`, i, j) = (q)`−j

√
(1− |q|2(`+j))(1− |q|2(`−i))
(1− |q|2(2`))(1− |q|2(2`+1))

.

α+(`, i, j) =

√
(1− |q|2(`−j+1))(1− |q|2(`−i+1))

(1− |q|2(2`+1))(1− |q|2(2`+2))
.

α−(`, i, j) = q`−i(q)`−j+1

√
q

q̄

√
(1− |q|2(`+j))(1− |q|2(`+i))
(1− |q|2(2`))(1− |q|2(2`+1))

.

α+
+(`, i, j) = q`−j(q)`−i+1

√
q

q̄

√
(1− |q|2(`+j+1))(1− |q|2(`+i+1))

(1− |q|2(2`+1))(1− |q|2(2`+2))
.

α+
−(`, i, j) =

√
(1− |q|2(`−j))(1− |q|2(`−i))
(1− |q|2(2`))(1− |q|2(2`+1))

.
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The Dirac operator

Let H = L2(h)⊗ C2, πeq(x) =
[
π(x) 0
0 π(x)

]
where π is the GNS

representation of Aq on L2(h). Also, let

D =

[
0 T ∗

T 0

]
and γ =

[
1 0
0 −1

]
where T is the following unbounded operator on L2(h) with dense
domain Aq defined by

T (e`i,j,k) = d(`, i, k)e`i,j,k

such that

d(`, i, k) =

{
(2`+ 1) +

√
−1(k − `− i) if i 6= −`,

−(2`+ 1) +
√
−1k if i = −`.
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Equivariant spectral triple

Theorem

The tuple (Aq ,H , πeq ,D , γ) is a 4+-summable, non-degenerate, even
spectral triple for Uq(2) that is equivariant under its own
comultiplication action.

Theorem

The Chern character of the spectral triple (Aq ,H , πeq ,D , γ) is
nontrivial.

Proof : We are interested in

〈[p⊗ pθ], (Aq ,H , πeq ,D , γ)〉 = ind((p⊗ pθ)T |T |−1(p⊗ pθ)) .
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Idea of the proof

1 Let P be the orthogonal projection onto {v ∈ L2(h) : bb∗(v) = v}
and consider the C∗-algebra B = C∗{Pb, PD}. Since θ is
irrational, this C∗-algebra becomes isomorphic to the
noncommutative torus Aθ, and this helps us to identify p⊗ pθ with
a projection Pθ in B. Then, PPθ = PθP = Pθ.

2 The Fredholm operator PθT |T |−1Pθ is a compact perturbation of
PθFPθ for certain operator F : PL2(h)→ PL2(h).

3 We decompose PL2(h) = ⊕∞j=0Hj such that

P = ⊕jPj , F = ⊕jFj , PθFPθ = ⊕jP jθFjP
j
θ

where P jθ = Pθ|Hj .

4 It turns out that for j1, j2 > 0, ind(P j1θ Fj1P
j1
θ ) = ind(P j2θ Fj2P

j2
θ ).

Moreover, ind(P 0
θ F0P

0
θ ) 6= 0.

5 Finally, we prove that PθFPθ : PθL
2(h)→ PθL

2(h) is Fredholm.
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Thank You !
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