Equivariant spectral triple for the compact quantum group $U_q(2)$ for complex deformation parameters

Satyajit Guin

IIT Kanpur

June 14, 2021

(joint work with Bipul Saurabh)

Background

Let \mathbb{G} be a compact quantum group acting on a C^* -algebra \mathbb{A} via the action $\tau: \mathbb{A} \longrightarrow \mathbb{A} \otimes C(\mathbb{G})$, so that we have a C^* -dynamical system $(\mathbb{A}, \mathbb{G}, \tau)$. Let (π, \mathbb{U}) be a covariant representation of the C^* -dynamical system $(\mathbb{A}, \mathbb{G}, \tau)$ on a Hilbert space \mathcal{H} . Let $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \gamma)$ be an even spectral triple on \mathbb{A} .

- The Dirac operator \mathcal{D} is called "equivariant" under the action τ if $\mathcal{D} \otimes 1$ commutes with \mathbb{U} .
- ② If $\gamma \otimes 1$ also commutes with \mathbb{U} , then the spectral triple is called \mathbb{G} -equivariant.

Taking $F = \mathcal{D}|\mathcal{D}|^{-1}$, the spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \gamma)$ induces a K-homology class $[(\mathcal{A}, \mathcal{H}, F, \gamma)]$ in $K^0(\mathbb{A})$ consisting of even Fredholm modules. To check nontriviality of this class, one pairs it with $K_0(\mathbb{A})$ through the Kasparov product.

Given a projection $P \in M_n(\mathbb{A})$ define

$$\mathcal{H}_n = \mathcal{H} \otimes \mathbb{C}^n$$
 , $\gamma_n = \gamma \otimes I_n$, $F_n = F \otimes I_n$, $P^+ = \frac{1+\gamma_n}{2}P$, $P^- = \frac{1-\gamma_n}{2}P$.

The following operator

$$P^-F_nP^+:P^+\mathcal{H}_n^+\longrightarrow P^-\mathcal{H}_n^-$$

is a Fredholm operator, where $\mathcal{H}_n = \mathcal{H}_n^+ \oplus \mathcal{H}_n^-$ under the grading operator γ_n . Index of this Fredholm operator is the value of the $K_0 - K^0$ pairing $\langle [P], [(\mathcal{A}, \mathcal{H}, F, \gamma)] \rangle$.

• An even spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D}, \gamma)$ is called nontrivial if $\langle [P], [(\mathcal{A}, \mathcal{H}, F, \gamma)] \rangle$ is nonzero for some $[P] \in K_0(\mathbb{A})$.

Motivation

A compact quantum group \mathbb{G} acts on its underlying C^* -algebra $\mathbb{A} = C(\mathbb{G})$ via the comultiplication Δ , and we have the C^* -dynamical system $(C(\mathbb{G}), \mathbb{G}, \Delta)$. A natural choice for \mathcal{A} is the dense Hopf \star -subalgebra $\mathcal{O}(\mathbb{G})$ generated by the matrix coefficients of f.d. corepresentations of $(C(\mathbb{G}), \Delta)$.

Now, one can desire to produce an explicit \mathbb{G} -equivariant nontrivial Dirac operator on \mathcal{A} . We are interested in compact quantum groups arising from the semidirect product construction of Woronowicz et al., for which $U_q(2)$ is a nontrivial concrete example.

Origin of $U_q(2)$

In (Kasprzak-Meyer-Roy-Woronowicz, 2016), Woronowicz et al. defined a family of q-deformations of SU(2) for $q \in \mathbb{C}^*$. This agrees with the compact quantum group $SU_q(2)$ when q is real. But for $q \in \mathbb{C} \setminus \mathbb{R}$, $SU_q(2)$ is not a compact quantum group, rather a braided compact quantum group. In (Meyer-Roy-Woronowicz, 2016), Woronowicz et al. showed that for a compact quantum group $\mathbb{G} = (\mathbb{A}, \Delta)$ and a braided compact quantum group \mathbb{B} over \mathbb{G} , the semidirect product $\mathbb{A} \boxtimes \mathbb{B}$ becomes a compact quantum group.

Taking $\mathbb{B} = SU_q(2)$ for $q \in \mathbb{C}^*$ and $\mathbb{A} = C(\mathbb{T})$, we obtain a genuine compact quantum group, and it is the coopposite of the compact quantum group $U_q(2)$ defined in (Zhang-Zhao, 2005).

Definition: The CQG $U_q(2)$

Let $q \in \mathbb{C}^*$. The C^* -algebra $C(U_q(2))$, to be denoted by \mathbb{A}_q throughout, is the universal C^* -algebra generated by a, b, D satisfying the following relations:

$$ba = qab, \quad a^*b = qba^*, \quad bb^* = b^*b, \quad aa^* + bb^* = 1,$$

 $aD = Da, \quad bD = q^2|q|^{-2}Db, \quad DD^* = D^*D = 1, \quad a^*a + |q|^2b^*b = 1.$

Definition: The CQG $U_q(2)$

Let $q \in \mathbb{C}^*$. The C^* -algebra $C(U_q(2))$, to be denoted by \mathbb{A}_q throughout, is the universal C^* -algebra generated by a, b, D satisfying the following relations:

$$ba = qab, \quad a^*b = qba^*, \quad bb^* = b^*b, \quad aa^* + bb^* = 1,$$

 $aD = Da, \quad bD = q^2|q|^{-2}Db, \quad DD^* = D^*D = 1, \quad a^*a + |q|^2b^*b = 1.$

The compact quantum group structure is given by the comultiplication $\Delta: \mathbb{A}_q \longrightarrow \mathbb{A}_q \otimes \mathbb{A}_q$ defined as follows:

$$\Delta(a) = a \otimes a - \bar{q}b \otimes Db^* , \ \Delta(b) = a \otimes b + b \otimes Da^* , \ \Delta(D) = D \otimes D.$$

Let $\mathcal{O}(U_q(2))$ be the \star -subalgebra of $C(U_q(2))$ generated by a, b and D. The Hopf \star -algebra structure on it is given by the following:

antipode:
$$S(a) = a^*, \ S(b) = -qbD^*, \ S(D) = D^*,$$

 $S(a^*) = a, \ S(b^*) = -(\bar{q})^{-1}b^*D,$
counit: $\epsilon(a) = 1, \ \epsilon(b) = 0, \ \epsilon(D) = 1.$

6/25

Faithful representations of $C(U_q(2))$ for |q| < 1

We concentrate on the case of $|q| \neq 1$. It is enough to restrict our attention to the case |q| < 1 and $q \neq 0$ because $U_q(2)$ and $U_{\frac{1}{q}}(2)$ are isomorphic as CQGs.

Faithful representations of $C(U_q(2))$ for |q| < 1

We concentrate on the case of $|q| \neq 1$. It is enough to restrict our attention to the case |q| < 1 and $q \neq 0$ because $U_q(2)$ and $U_{\frac{1}{q}}(2)$ are isomorphic as CQGs.

Fix any $q \in \mathbb{C}^*$ with |q| < 1 and let $\theta = \frac{1}{\pi} \arg(q)$. Let \mathcal{H} be the Hilbert space $\ell^2(\mathbb{N}) \otimes \ell^2(\mathbb{Z}) \otimes \ell^2(\mathbb{Z})$. Consider the right shift $V : e_n \mapsto e_{n+1}$ acting on $\ell^2(\mathbb{N})$ and the bilateral shift $U : e_n \mapsto e_{n+1}$ acting on $\ell^2(\mathbb{Z})$. Define the following representation π of \mathbb{A}_q on \mathcal{H} :

$$\pi(a) = \sqrt{1 - |q|^{2N}} V \otimes 1 \otimes 1 \quad , \quad \pi(b) = q^N \otimes U \otimes 1 \, ,$$
$$\pi(D) = 1 \otimes e^{-2\pi\sqrt{-1}\theta N} \otimes U \, .$$

Proposition

The representation π of \mathbb{A}_q defined above is faithful.

Linear basis and the Haar state

Define

$$\langle n, m, k, l \rangle = \begin{cases} a^n b^m (b^*)^k D^l & \text{if } n \ge 0, \\ (a^*)^{-n} b^m (b^*)^k D^l & \text{if } n \le 0. \end{cases}$$

Theorem

The set $\{\langle n, m, k, l \rangle : n, l \in \mathbb{Z}, m, k \in \mathbb{N} \}$ is a linear basis of $\mathcal{O}(U_q(2))$.

Linear basis and the Haar state

Define

$$\langle n, m, k, l \rangle = \begin{cases} a^n b^m (b^*)^k D^l & \text{if } n \ge 0, \\ (a^*)^{-n} b^m (b^*)^k D^l & \text{if } n \le 0. \end{cases}$$

Theorem

The set $\{\langle n, m, k, l \rangle : n, l \in \mathbb{Z}, m, k \in \mathbb{N} \}$ is a linear basis of $\mathcal{O}(U_q(2))$.

Theorem

The Haar state $h: C(U_q(2)) \longrightarrow \mathbb{C}$ is given by the following,

$$h(x) = (1 - |q|^2) \sum_{n=0}^{\infty} |q|^{2n} \langle e_{n,0,0}, \pi(x) e_{n,0,0} \rangle,$$

where $\{e_{n,r,s}\}$ denotes the standard orthonormal basis of $\ell^2(\mathbb{N} \times \mathbb{Z} \times \mathbb{Z})$.

Torus quotient

Moreover, one has

$$h(\langle n, m, k, l \rangle) = \begin{cases} \frac{1 - |q|^2}{1 - |q|^{2(m+1)}} & \text{if } m = k, \text{ and } n = l = 0, \\ 0 & \text{otherwise} \end{cases}$$

In this case of |q| < 1, the Haar state is not a trace as

$$h(a^*a - aa^*) = (1 - |q|^2)h(bb^*) = \frac{1 - |q|^2}{1 + |q|^2} \neq 0.$$

Torus quotient

Moreover, one has

$$h(\langle n, m, k, l \rangle) = \begin{cases} \frac{1 - |q|^2}{1 - |q|^{2(m+1)}} & \text{if } m = k, \text{ and } n = l = 0, \\ 0 & \text{otherwise }. \end{cases}$$

In this case of |q| < 1, the Haar state is not a trace as

$$h(a^*a - aa^*) = (1 - |q|^2)h(bb^*) = \frac{1 - |q|^2}{1 + |q|^2} \neq 0.$$

Let $\Delta_{\mathbb{T}}$ denotes the coproduct on $C(\mathbb{T})$ and $\phi: \mathbb{A}_q \longrightarrow C(\mathbb{T})$ be the homomorphism given by $\phi(a) = 1$, $\phi(b) = 0$ and $\phi(D) = \mathfrak{z}$. It follows that $\Delta_{\mathbb{T}} \circ \phi = (\phi \otimes \phi) \circ \Delta$. Thus, \mathbb{T} is a quantum subgroup of $U_q(2)$ and hence, \mathbb{T} acts on \mathbb{A}_q by the formula $\Phi(x) = (\mathrm{id} \otimes \phi)\Delta$. In such a case, one defines the quotient space $U_q(2)/\mathbb{T}$ as follows,

$$C(U_q(2)/\mathbb{T}) = \{x \in \mathbb{A}_q : (\mathrm{id} \otimes \phi)\Delta(x) = x \otimes 1\}.$$

Faithfulness of the Haar state

The conditional expectation $E: \mathbb{A}_q \longrightarrow C(U_q(2)/\mathbb{T})$ is defined as $(\mathrm{id} \otimes (h_{\mathbb{T}} \circ \phi)) \circ \Delta$, where $h_{\mathbb{T}}$ denotes the Haar state on \mathbb{T} .

Proposition

The C^* -algebra $C(U_q(2)/\mathbb{T})$ is the C^* -subalgebra of \mathbb{A}_q generated by a and b, and $C(U_q(2)/\mathbb{T}) = C(SU_{|q|}(2))$.

Theorem

The Haar state on the compact quantum group $U_q(2)$ is faithful.

Corepresentations of \mathcal{A}_q

For $\ell \in \frac{1}{2}\mathbb{N}$ and $i, j \in I_{\ell} := \{-\ell, \cdots, \ell\}$, let

$$\begin{split} f_j^\ell &= \begin{pmatrix} 2\ell \\ \ell+j \end{pmatrix}_{|q|^2}^{1/2} a^{\ell-j} b^{\ell+j} \,, \\ V_\ell^R &= \oplus_{j=-\ell}^\ell \mathbb{C} f_j^\ell \quad \text{and} \quad T_\ell^R = \Delta|_{V_\ell^R} \,. \end{split}$$

That is, V_ℓ^R is the vector subspace of \mathcal{A}_q spanned by degree 2ℓ -homogeneous monomials in a and b. We get a corepresentation $T_\ell^R:V_\ell^R\longrightarrow V_\ell^R\otimes \mathcal{A}_q$ of \mathcal{A}_q on V_ℓ^R . For $i,j\in I_\ell$, let t_{ij}^ℓ denote the matrix coefficients of T_ℓ^R with respect to the basis $\{f_j^\ell\}$ of V_ℓ^R , and we have

$$T_{\ell}^{R}(f_{j}^{\ell}) = \Delta(f_{j}^{\ell}) = \sum_{i=-\ell}^{\ell} f_{i}^{\ell} \otimes t_{ij}^{\ell}.$$

Hence, T_{ℓ}^{R} is a $(2\ell+1)$ -dimensional corepresentation of \mathcal{A}_{q} .

Moreover, there are infinitely many one dimensional corepresentations D^m of \mathcal{A}_q .

Consider the following sesquilinear forms $\langle \cdot, \cdot \rangle_R$ and $\langle \cdot, \cdot \rangle_L$ on \mathcal{A}_q ,

$$\langle x, y \rangle_L = h(x^*y)$$
 , $\langle x, y \rangle_R = \overline{h(xy^*)}$ for $x, y \in \mathcal{A}_q$.

In the Hilbert space $(V_{\ell}^R, \langle \cdot, \cdot \rangle_L)$, the set $B_{\ell} := \{|q|^{\ell} | 2\ell + 1|_{|q|}^{1/2} f_j^{\ell}\}_{i \in I_{\ell}}$ is an orthonormal basis of V_{ℓ}^R .

Theorem

For $m \in \mathbb{Z}$ and $\ell \in \frac{1}{2}\mathbb{N}$, $T_{\ell}^R D^m$ is an irreducible corepresentation of \mathcal{A}_q and its matrix coefficients with respect to the basis B^{ℓ} are $\{t_{ij}^{\ell}D^m: i,j \in I_{\ell}\}$. Moreover, the matrix $((t_{ij}^{\ell}D^m))$ is a unitary element of $M_{2\ell+1}(\mathbb{C}) \otimes \mathcal{A}_q$.

The Peter-Weyl decomposition

Theorem

Given a corepresentation T of A_q , let C(T) denotes the vector subspace of A_q generated by the matrix coefficients of T. Then, we have

2

$$\langle t^{\ell}_{ij} D^{m}, t^{\ell'}_{i'j'} D^{m'} \rangle_{R} = |q|^{-2j} |2\ell + 1|^{-1}_{|q|} \delta_{\ell\ell'} \delta_{ii'} \delta_{jj'} \delta_{mm'}$$

$$\langle t^{\ell}_{ij} D^{m}, t^{\ell'}_{i'j'} D^{m'} \rangle_{L} = |q|^{2i} |2\ell + 1|^{-1}_{|q|} \delta_{\ell\ell'} \delta_{ii'} \delta_{jj'} \delta_{mm'}$$

- **3** The set $\{T_{\ell}^R D^m : \ell \in \frac{1}{2}\mathbb{N}, m \in \mathbb{Z}\}$ is a complete list of irreducible mutually inequivalent corepresentations of \mathcal{A}_q .
- The set $\{|q|^{-i}|2\ell+1|_{|q|}^{1/2}t_{ij}^{\ell}D^m:\ell\in\frac{1}{2}\mathbb{N},m\in\mathbb{Z}\}$ is an orthonormal basis of $L^2(h)$.

Little q-Jacobi polynomials and matrix coefficients

Theorem

The matrix coefficients $t_{ij}^{\ell}D^k$ are expressed in terms of the little q-Jacobi polynomials in the following way:

• for the case of $i+j \leq 0, i \geq j$,

$$a^{-(i+j)}c^{i-j}(\bar{q})^{(j-i)(\ell+j)} \frac{\binom{2\ell}{\ell+j}\frac{1}{|q|^2}}{\binom{2\ell}{\ell+i}\frac{1}{|q|^2}} \binom{\ell-j}{i-j}_{|q|^2} \mathcal{P}_{\ell+j}^{(i-j,-i-j)}(bb^*;|q|^2) D^{\ell+j+k};$$

$$a^{-(i+j)}b^{j-i}q^{(i-j)(\ell+i)}\frac{\binom{2\ell}{\ell+j}\binom{1}{|q|^2}}{\binom{2\ell}{\ell+i}\binom{1}{|q|^2}}\binom{\ell+j}{j-i}_{|q|^2}\mathcal{P}_{\ell+i}^{(j-i,-i-j)}(bb^*;|q|^2)D^{\ell+i+k};$$

• for the case of $i + j \ge 0$, $i \le j$,

$$q^{(i-j)(\ell+i)} \frac{\binom{2\ell}{\ell+j} \binom{2\ell}{|q|^2}}{\binom{2\ell}{\ell+i} \binom{1/2}{|q|^2}} \binom{\ell+j}{j-i}_{|q|^2} \mathcal{P}_{\ell-j}^{(j-i,i+j)}(bb^*;|q|^2)(a^*)^{i+j}b^{j-i}D^{\ell+i+k};$$

Tensor product decomposition and classification

• for the case of $i + j \ge 0$, $i \ge j$,

$$(\bar{q})^{(j-i)(\ell+j)} \frac{\binom{2\ell}{\ell+j}|_{|q|^2}^{1/2}}{\binom{2\ell}{\ell+i}|_{|q|^2}^{1/2}} \binom{\ell-j}{i-j}|_{|q|^2} \mathcal{P}_{\ell-i}^{(i-j,i+j)}(bb^*;|q|^2)(a^*)^{i+j}c^{i-j}D^{\ell+j+k} .$$

Tensor product decomposition and classification

• for the case of $i + j \ge 0$, $i \ge j$,

$$(\bar{q})^{(j-i)(\ell+j)} \frac{\binom{2\ell}{\ell+j}|_{|q|^2}^{1/2}}{\binom{2\ell}{\ell+i}|_{|q|^2}^{1/2}} \binom{\ell-j}{i-j}|_{|q|^2} \mathcal{P}_{\ell-i}^{(i-j,i+j)}(bb^*;|q|^2)(a^*)^{i+j}c^{i-j}D^{\ell+j+k} .$$

Theorem

 $The \ following \ decomposition \ holds,$

$$T_{\ell_1}D^m\otimes T_{\ell_2}D^n$$

$$\simeq T_{\ell_1+\ell_2}D^{m+n} \oplus T_{(\ell_1+\ell_2)-1}D^{m+n+1} \oplus \cdots \oplus T_{|\ell_1-\ell_2|}D^{m+n+2\min\{\ell_1,\ell_2\}}.$$

Tensor product decomposition and classification

• for the case of $i + j \ge 0$, $i \ge j$,

$$(\bar{q})^{(j-i)(\ell+j)} \frac{\binom{2\ell}{\ell+j}|_{|q|^2}^{1/2}}{\binom{2\ell}{\ell+i}|_{|q|^2}^{1/2}} \binom{\ell-j}{i-j}|_{|q|^2} \mathcal{P}_{\ell-i}^{(i-j,i+j)}(bb^*;|q|^2)(a^*)^{i+j}c^{i-j}D^{\ell+j+k} \ .$$

Theorem

The following decomposition holds,

$$T_{\ell_1}D^m\otimes T_{\ell_2}D^n$$

$$\simeq T_{\ell_1+\ell_2}D^{m+n} \oplus T_{(\ell_1+\ell_2)-1}D^{m+n+1} \oplus \cdots \oplus T_{|\ell_1-\ell_2|}D^{m+n+2\min\{\ell_1,\ell_2\}}.$$

Theorem

Let q and q' be two non-zero complex numbers which are not roots of unity. Then, $U_q(2)$ and $U_{q'}(2)$ are isomorphic as CQGs if and only if $q' \in \{q, \overline{q}, \frac{1}{q}, \frac{1}{\overline{q}}\}$.

Towards the K-groups

For $q = |q|e^{i\pi\theta}$, let $\theta \notin \mathbb{Q} \setminus \{0,1\}$. Let $\mathscr{T} := C^*(V)$ be the Toeplitz algebra. We have the well-known short exact sequence

$$0 \longrightarrow \mathcal{K} \stackrel{\iota}{\longrightarrow} \mathscr{T} \stackrel{\sigma}{\longrightarrow} C(\mathbb{T}) \longrightarrow 0$$

where $\sigma: V \longrightarrow \mathfrak{z}$. Consider the homomorphism

$$\tau: C(U_q(2)) \longrightarrow C(\mathbb{T}) \otimes \mathcal{B}(\ell^2(\mathbb{Z}) \otimes \ell^2(\mathbb{Z}))$$

given by $\tau = \sigma \otimes 1 \otimes 1$, and for $b_0 = p \otimes U \otimes 1$ let

 $\mathcal{I}_{\theta}= ext{ the closed two-sided ideal of }C(U_{q}(2)) ext{ generated by }b_{0} ext{ and }b_{0}^{*}\,,$

$$\mathcal{B}_{\theta} = C^* \left(\left\{ \tau(a_0) , \tau(D_{\theta}) \right\} \right) = C^* \left(\left\{ \mathfrak{z} \otimes 1 \otimes 1 , 1 \otimes e^{-2\sqrt{-1}\pi\theta N} \otimes U \right\} \right).$$

Proposition

The following chain of C^* -algebras

$$0 \longrightarrow \mathcal{I}_{\theta} \stackrel{\iota}{\longrightarrow} C(U_q(2)) \stackrel{\tau}{\longrightarrow} \mathcal{B}_{\theta} \longrightarrow 0$$

is an exact sequence, where 'i' denotes the inclusion map.

The K-groups

Lemma

Let \mathbb{A}_{θ} be the noncommutative torus. Then, $\mathcal{I}_{\theta} = \mathcal{K}(\ell^2(\mathbb{N})) \otimes \mathbb{A}_{\theta}$.

Theorem

For $q = |q|e^{\sqrt{-1}\pi\theta}$ with θ irrational, both the K-groups $K_0(C(U_q(2)))$ and $K_1(C(U_q(2)))$ are isomorphic to \mathbb{Z}^2 . The equivalence classes of unitaries [D] and $[p \otimes U \otimes 1 + (1-p) \otimes 1 \otimes 1]$ form a \mathbb{Z} -basis for $K_1(C(U_q(2)))$. The equivalence classes of projections [1] and $[p \otimes p_{\theta}]$ form a \mathbb{Z} -basis for $K_0(C(U_q(2)))$, where p_{θ} denotes the Powers-Rieffel projection with trace θ in the noncommutative torus \mathbb{A}_{θ} , and $p = |e_0\rangle\langle e_0|$.

Action of the generators on $L^2(h)$

Let us fix the following notation

$$\begin{array}{lcl} e^{\ell}_{i,j,k} &:= & |q|^{-i} \sqrt{|2\ell+1|_{|q|}} \, t^{\ell}_{i,j}(D^*)^k \\ &= & |q|^{-i} \sqrt{|2\ell+1|_{|q|}} \, t^{\ell}_{i,j}D^{-k} \end{array}$$

for the orthonormal basis of $L^2(h)$. Here, $k \in \mathbb{Z}$, $\ell \in \frac{1}{2}\mathbb{N}$ and $i, j \in \{-\ell, \dots, \ell\}$.

Theorem

The action of the generators of $U_q(2)$ on the orthonormal basis element $e_{i,j,k}^{\ell}$ is described by the following:

Theorem

- $\bullet b \triangleright e_{i,j,k}^{\ell} = \beta_{+}(\ell,i,j)e_{i-1/2,j+1/2,k}^{\ell+1/2} + \beta_{-}(\ell,i,j)e_{i-1/2,j+1/2,k-1}^{\ell-1/2}$
- $a \triangleright e_{i,j,k}^{\ell} = \alpha_{+}(\ell,i,j)e_{i-1/2,j-1/2,k}^{\ell+1/2} + \alpha_{-}(\ell,i,j)e_{i-1/2,j-1/2,k-1}^{\ell-1/2}$
- $a^* \triangleright e_{i,j,k}^{\ell} = \alpha_+^{\ell}(\ell,i,j)e_{i+1/2,j+1/2,k+1}^{\ell+1/2} + \alpha_-^{\ell}(\ell,i,j)e_{i+1/2,j+1/2,k}^{\ell-1/2}$ where,

$$\beta_{+}(\ell,i,j) = q^{\ell-j} \sqrt{\frac{(1-|q|^{2(\ell+j+1)})(1-|q|^{2(\ell-i+1)})}{(1-|q|^{2(2\ell+1)})(1-|q|^{2(2\ell+2)})}}.$$

$$\beta_-(\ell,i,j) = -q^{\ell-j-1}(\overline{q})^{j-i+1} \sqrt{\frac{q}{\overline{q}}} \sqrt{\frac{(1-|q|^{2(\ell-j)})(1-|q|^{2(\ell+i)})}{(1-|q|^{2(2\ell)})(1-|q|^{2(2\ell+1)})}} \,.$$

4 D > 4 B > 4 B > 4 B > 9 Q Q

Theorem

$$\beta_+^+(\ell,i,j) \ = \ -q^{j-i-1}(\overline{q})^{\ell-j+1} \sqrt{\frac{q}{\overline{q}}} \sqrt{\frac{(1-|q|^{2(\ell-j+1)})(1-|q|^{2(\ell+i+1)})}{(1-|q|^{2(2\ell+1)})(1-|q|^{2(2\ell+2)})}} \, .$$

$$\beta_-^+(\ell,i,j) = (\overline{q})^{\ell-j} \sqrt{\frac{(1-|q|^{2(\ell+j)})(1-|q|^{2(\ell-i)})}{(1-|q|^{2(2\ell)})(1-|q|^{2(2\ell+1)})}}.$$

$$\alpha_{+}(\ell, i, j) = \sqrt{\frac{(1 - |q|^{2(\ell - j + 1)})(1 - |q|^{2(\ell - i + 1)})}{(1 - |q|^{2(2\ell + 1)})(1 - |q|^{2(2\ell + 2)})}}.$$

$$\alpha_-(\ell,i,j) \quad = \quad q^{\ell-i}(\overline{q})^{\ell-j+1} \sqrt{\frac{q}{\overline{q}}} \sqrt{\frac{(1-|q|^{2(\ell+j)})(1-|q|^{2(\ell+i)})}{(1-|q|^{2(2\ell)})(1-|q|^{2(2\ell+1)})}} \, .$$

The Dirac operator

Let $\mathscr{H} = L^2(h) \otimes \mathbb{C}^2$, $\pi_{eq}(x) = \begin{bmatrix} \pi(x) & 0 \\ 0 & \pi(x) \end{bmatrix}$ where π is the GNS representation of \mathscr{A}_q on $L^2(h)$. Also, let

$$\mathscr{D} = \begin{bmatrix} 0 & T^* \\ T & 0 \end{bmatrix} \quad \text{ and } \quad \gamma = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

where T is the following unbounded operator on $L^2(h)$ with dense domain \mathscr{A}_q defined by

$$T(e_{i,j,k}^\ell) = d(\ell,i,k) e_{i,j,k}^\ell$$

such that

$$d(\ell,i,k) = \begin{cases} (2\ell+1) + \sqrt{-1}(k-\ell-i) & \text{if } i \neq -\ell, \\ -(2\ell+1) + \sqrt{-1}k & \text{if } i = -\ell. \end{cases}$$

Equivariant spectral triple

Theorem

The tuple $(\mathcal{A}_q, \mathcal{H}, \pi_{eq}, \mathcal{D}, \gamma)$ is a 4^+ -summable, non-degenerate, even spectral triple for $U_q(2)$ that is equivariant under its own comultiplication action.

Theorem

The Chern character of the spectral triple $(\mathcal{A}_q, \mathcal{H}, \pi_{eq}, \mathcal{D}, \gamma)$ is nontrivial.

Proof: We are interested in

$$\langle [p \otimes p_{\theta}], (\mathscr{A}_q, \mathscr{H}, \pi_{eq}, \mathscr{D}, \gamma) \rangle = ind((p \otimes p_{\theta})T|T|^{-1}(p \otimes p_{\theta})).$$

Idea of the proof

- Let P be the orthogonal projection onto $\{v \in L^2(h) : bb^*(v) = v\}$ and consider the C^* -algebra $\mathcal{B} = C^*\{Pb, PD\}$. Since θ is irrational, this C^* -algebra becomes isomorphic to the noncommutative torus \mathbb{A}_{θ} , and this helps us to identify $p \otimes p_{\theta}$ with a projection P_{θ} in \mathcal{B} . Then, $PP_{\theta} = P_{\theta}P = P_{\theta}$.
- ② The Fredholm operator $P_{\theta}T|T|^{-1}P_{\theta}$ is a compact perturbation of $P_{\theta}FP_{\theta}$ for certain operator $F:PL^{2}(h)\to PL^{2}(h)$.
- We decompose $PL^2(h) = \bigoplus_{j=0}^{\infty} \mathcal{H}_j$ such that

$$P = \bigoplus_{j} P_{j}$$
, $F = \bigoplus_{j} F_{j}$, $P_{\theta} F P_{\theta} = \bigoplus_{j} P_{\theta}^{j} F_{j} P_{\theta}^{j}$

where $P_{\theta}^{j} = P_{\theta}|_{\mathcal{H}_{j}}$.

- **1** It turns out that for $j_1, j_2 > 0$, $ind(P_{\theta}^{j_1} F_{j_1} P_{\theta}^{j_1}) = ind(P_{\theta}^{j_2} F_{j_2} P_{\theta}^{j_2})$. Moreover, $ind(P_{\theta}^{0} F_{0} P_{\theta}^{0}) \neq 0$.
- **9** Finally, we prove that $P_{\theta}FP_{\theta}: P_{\theta}L^2(h) \to P_{\theta}L^2(h)$ is Fredholm.

References

Satyajit Guin and Bipul Saurabh.

Representations and classification of the compact quantum groups $U_q(2)$ for complex deformation parameters.

Internat. J. Math. 32 (2021), no. 4, 2150020.

Satyajit Guin and Bipul Saurabh.

K-theory and equivariant spectral triple for the quantum group $U_q(2)$ for complex deformation parameters. arXiv:2102.11473.

Thank You!